Project Team

- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

David H. Koch Institute for Integrative Cancer Research

Massachusetts Institute of Technology

Cambridge, Ma

Bryan Donovan

Project Team

Owner Architect **MEP Engineer Structural Engineer Lighting Consultant Plumbing/Fire Protection/Codes Civil Engineer** LEED/Sustainable Design Landscape Architect Telecommunications

Massachusetts Institute of Technology Ellenzweig Architecture Bard, Rao + Athanas Engineers, LLC LeMessurier Consultants, Inc. Lam Partners, Inc. R.W. Sullivan Engineering Nitsch Engineering, Inc. The Green Engineer, LLP Reed Hilderbrand Associates, Inc. Communications Design Group, Inc.

Project Team

Project Overview

- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Project Site

Project Overview

- MIT Campus in Cambridge, Ma
- Parallel to Main Street
- Design provides a new quad for Campus

Project Overview

Project Team

Project Overview

- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Project Site

Project Overview

- MIT Campus in Cambridge, Ma
- Parallel to Main Street
- Design provides a new quad for Campus

Architectural Features

- 360,000 GSF \$190 million
- 7 Stories, Penthouse & Basement
- Transparent glass curtain wall facades
- Solar Shading on South Facade

Project Overview

South Facade

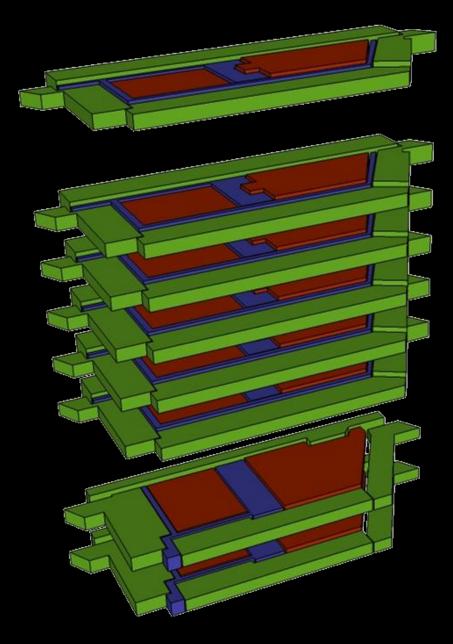
North Facade

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Project Site

Program

Project Overview


- MIT Campus in Cambridge, Ma
- Parallel to Main Street
- Design provides a new quad for Campus

Architectural Features

- 360,000 GSF \$190 million
- 7 Stories, Penthouse & Basement
- Transparent glass curtain wall facades
- Solar Shading on South Facade

- Levels B-1 Administrative Offices and Meeting Facilities
- Levels 2-6 Research and Core Laboratories, Classrooms
- Level 7 Vivarium

Project Overview

LEVEL 7

LEVELS 2-6

LEVELS B-1

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Project Site

Program

Project Goals

Project Overview

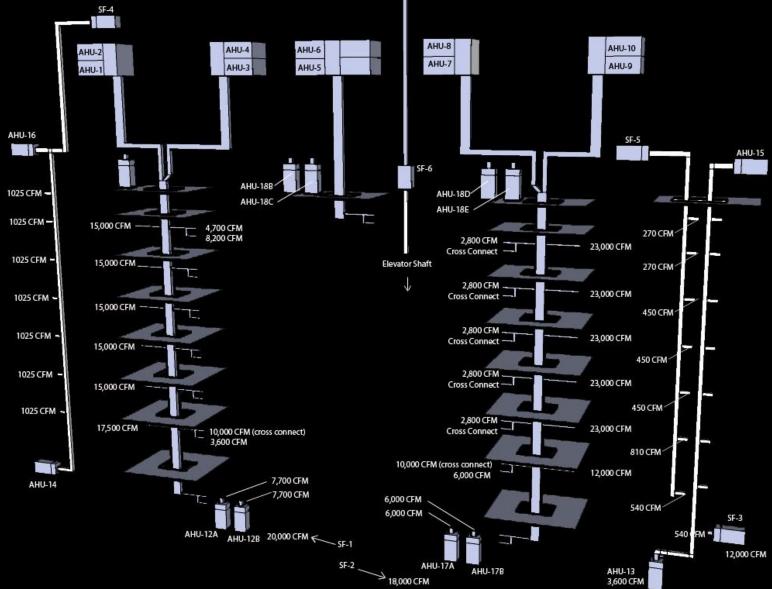
- MIT Campus in Cambridge, Ma
- Parallel to Main Street
- Design provides a new quad for Campus

Architectural Features

- 360,000 GSF \$190 million
- 7 Stories, Penthouse & Basement
- Transparent glass curtain wall facades
- Solar Shading on South Facade

- Levels B-1 Administrative Offices and Meeting Facilities
- Levels 2-6 Research and Core Laboratories, Classrooms
- Level 7 Vivarium

- House both Engineers and Cancer Biologists
- Achieve LEED Gold Certification



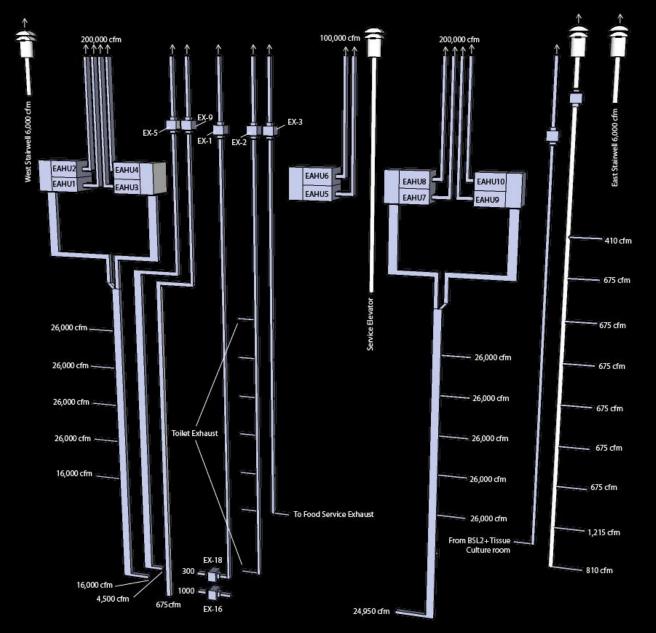
- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Air Supply

Existing Mechanical Systems

- 100% OA VAV Ventilation/Cooling System
- (10) 50,000 CFM Factory Built-Up AHU's
- (13) Packaged Modular AHU's

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions


Air Supply

Air Exhaust

Existing Mechanical Systems

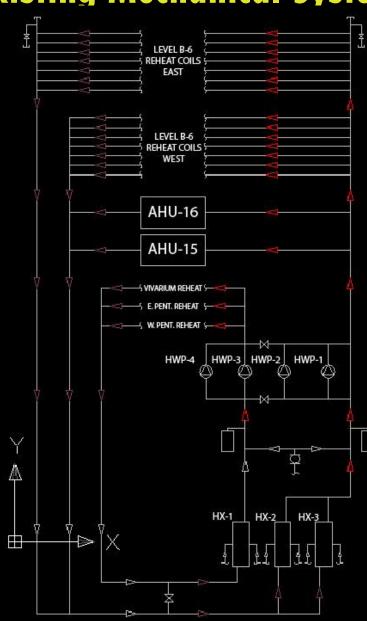
- 100% OA VAV Ventilation/Cooling System
- (10) 50,000 CFM Factory Built-Up AHU's
- (13) Packaged Modular AHU's

- (10) 50,000 CFM Factory Built-Up EAHU's
- Heat Pipe Heat Recovery Between Airstreams
- (18) Individual Exhaust Fans

- Project Team
- **Project Overview**
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Air Supply

Air Exhaust


Hot Water

Existing Mechanical Systems

- 100% OA VAV Ventilation/Cooling System
- (10) 50,000 CFM Factory Built-Up AHU's
- (13) Packaged Modular AHU's

- (10) 50,000 CFM Factory Built-Up EAHU's
- Heat Pipe Heat Recovery Between Airstreams
- (18) Individual Exhaust Fans

- 3 Heat Exchangers supply 180°F from LPS
- 4 Hot Water Pumps distribute the water
- Vivarium has a separate loop for redundancy

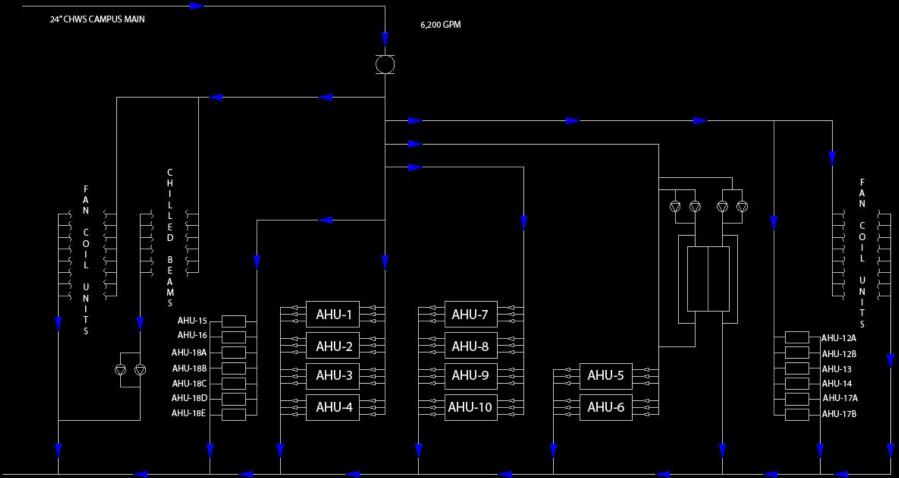
- Project Team • **Project Overview** Existing Mechanical Systems • Existing Design Loads • Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Air Supply

Air Exhaust

Hot Water

Existing Mechanical Systems

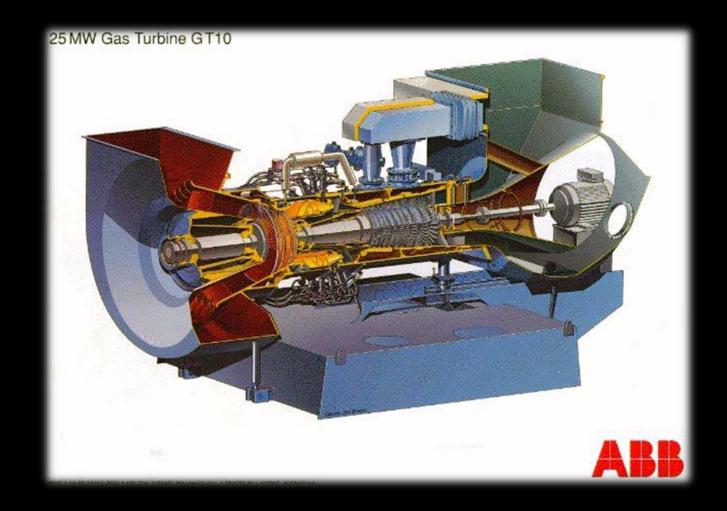

- 100% OA VAV Ventilation/Cooling System
- (10) 50,000 CFM Factory Built-Up AHU's
- (13) Packaged Modular AHU's

- (10) 50,000 CFM Factory Built-Up EAHU's
- Heat Pipe Heat Recovery Between Airstreams
- (18) Individual Exhaust Fans

- 3 Heat Exchangers supply 180°F from LPS
- 4 Hot Water Pumps distribute the water
- Vivarium has a separate loop for redundancy

Chilled Water

- 6,200 gpm 43°F CHW Supply from 24" Campus Loop
- Distributed between AHU's, FCU's & Chilled Beam
- 200 ton Water Cooled Rotary Screw Chiller (Vivarium)



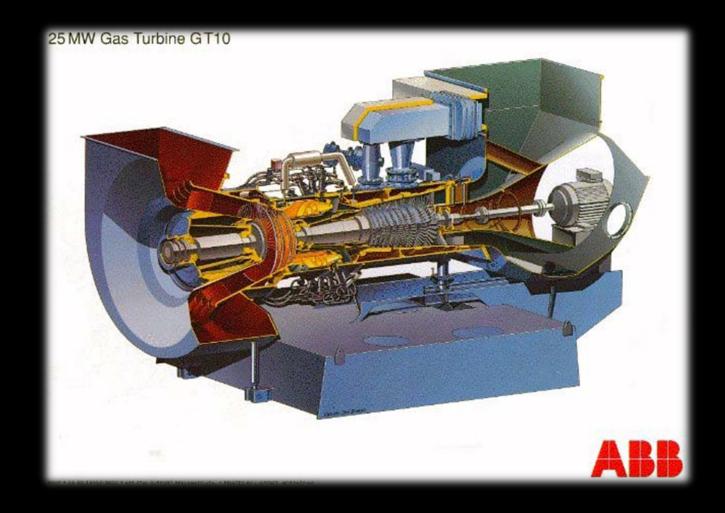
- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Cogeneration Plant

Existing Mechanical Systems

- ABB GT10A Combustion Generator Set
- 21 MW Nominal Electrical Output
- 56 MW Nominal Thermal Output
- Produces Steam for:
 - Campus Supply
 - Absorption Chillers

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions


Utility Rates

Existing Mechanical Systems

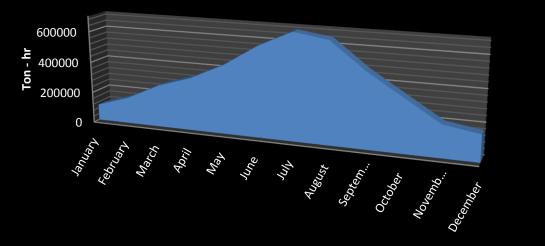
Cogeneration Plant

- ABB GT10A Combustion Generator Set
- 21 MW Nominal Electrical Output
- 56 MW Nominal Thermal Output
- Produces Steam for:
 - Campus Supply
 - Absorption Chillers

- Natural Gas \$ 0.9861/therm
- Electricity \$ 0.00429/kWh

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Peak Cooling Load


Existing Design Loads

2,746 ton peak cooling load

Existing Design Loads

Level 2-7 Laboratory Intense Load Areas Penthouse/Stairs/Equip. Rr Level 1 Offices

Annual Energy Consumption - Cooling

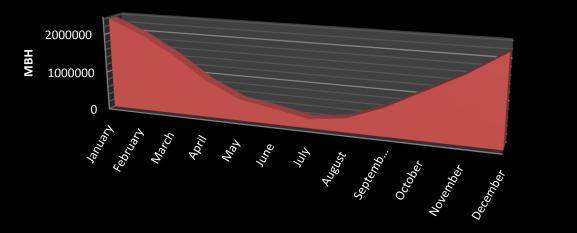
	Peak Cooling Load
	Tons
	2,114
	440
ns	160
	32
	2,746

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Existing Design Loads

Peak Cooling Load

• 2,746 ton peak cooling load


Peak Heating Load

• 9,588 MBH peak heating load

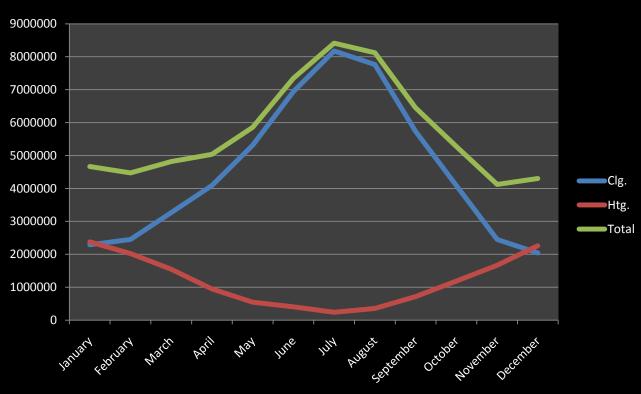
Existing Design Loads

Building Heat Loss Level B-6 Reheat Level 7 Reheat Hood Makeup Rehe Level 1 Unit Heaters **Basement Unit Hea**

Annual Energy Consumption - Heating

	Peak Heating Load
	MBH
	1,528
	3,927
	1,122
it	1,010
	400
ers	350
	9,588

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions


Existing Design Loads

Peak Cooling Load

• 2,746 ton peak cooling load

Peak Heating Load

- 9,588 MBH peak heating load **Annual Energy Consumption**
 - Heating 26.6 BTUh/ft²
 - Cooling 131 ft²/ton
 - \$19,600 /year HEATING
 - \$830,000 /year COOLING
 - \$860,000/year

Existing Design Loads

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

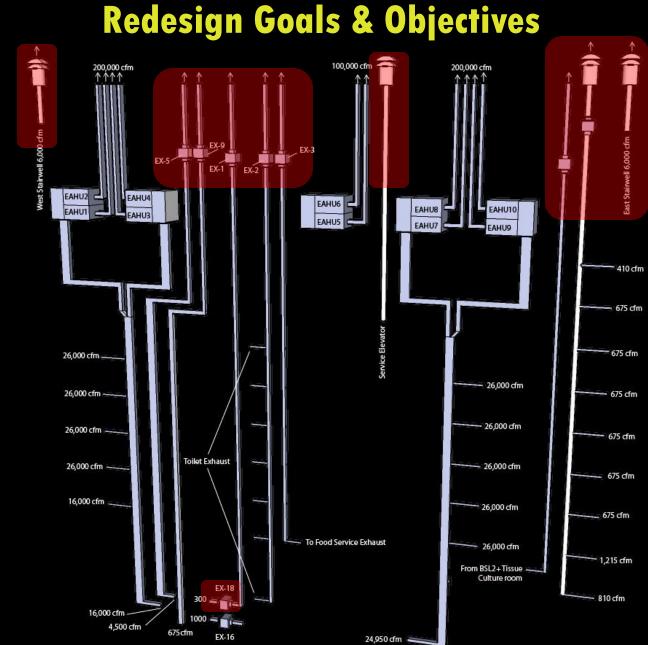
Overall Goals

Redesign Goals & Objectives

- Add renewable energy sources to the project
- Reduce the load on the Cogeneration Plant
- Increase Efficiency of Packaged AHU's

Redesign Goals & Objectives

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions


Overall Goals

Redesign Goals & Objectives

- Add renewable energy sources to the project
- Reduce the load on the Cogeneration Plant
- Increase Efficiency of Packaged AHU's

Heat Recovery Objectives

- Recover Energy from Individual Exhaust
- Utilize Recovered Energy to heat the stair shafts

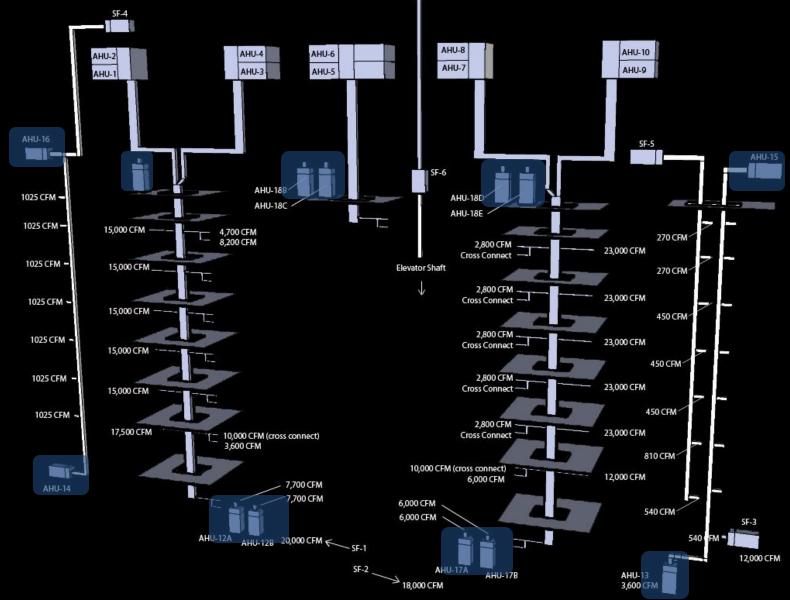
- Project Team
- **Project Overview**
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Overall Goals

Redesign Goals & Objectives

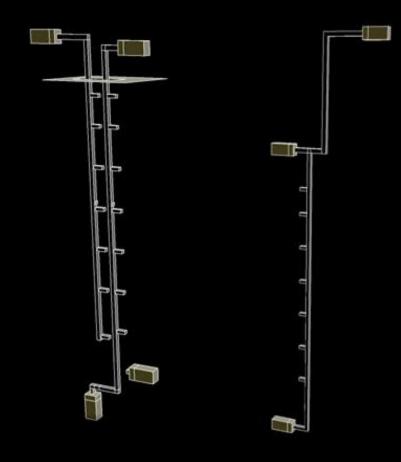
- Add renewable energy sources to the project
- Reduce the load on the Cogeneration Plant
- Increase Efficiency of Packaged AHU's

Heat Recovery Objectives

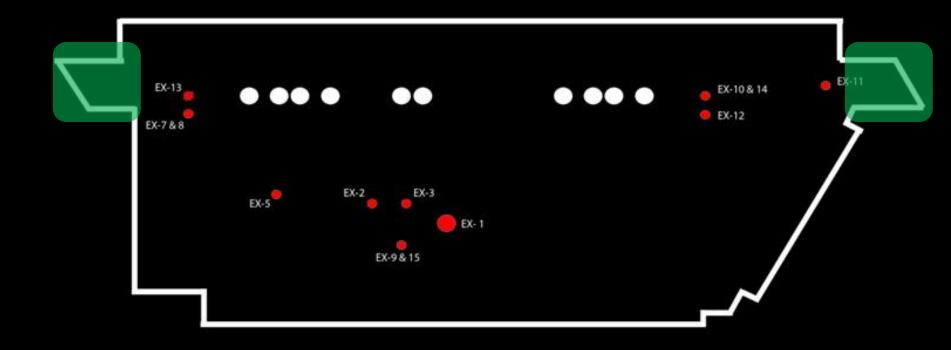

- Recover Energy from Individual Exhaust
- Utilize Recovered Energy to heat the stair shafts

Ground Source Heat Pump Objectives

- Provide CHW to Packaged AHU's,
- Size system to fit in quad adjacent to building



- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions


Available Airstreams

Mechanical Depth – Run Around Heat Recovery

- 12 Exhaust Airstreams
- Ducted to roof through the penthouse
- Targeted stair shafts

Mechanical Depth – Run Around Heat Recovery

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Mechanical Depth – Run Around Heat Recovery

Available Airstreams

- 12 Exhaust Airstreams
- Ducted to roof through the penthouse
- Targeted stair shafts

Recoverable Energy

- 49,150 CFM Total
- Unknown Temps Conservatively Assume 72°F
- Differing Coil Configurations compared to reduce ΔP

Mechanical Depth – Run Around Heat Recovery

		Recoverable Energy Comparison (Differing Coil Effectiveness)								
		40% Effective		ctive	50% Eff	ective	60% Eff	iective	70% Eff	fective
	cfm		Exh.Temp Post-		Exh.Temp Post-Coil °F	MBH Recovered	Exh.Temp Post- Coil °F	MBH Recovered	Exh.Temp Post-Coil °F	MBH Recovered
EX-1	20000	72	43	622	36	778	29	933	22	1,089
EX-2	8000	72	43	249	36	311	29	373	22	435
EX-3	3900	72	43	121	36	152	29	182	22	212
EX-5	1500	180	108	117	90	146	72	175	54	204
EX-7	1800	180	108	140	90	175	72	210	54	245
EX-8	1800	180	108	140	90	175	72	210	54	245
EX-9	675	72	43	21	36	26	29	31	22	37
EX-10	1800	72	43	56	36	70	29	84	22	98
EX-11	6000	72	43	187	36	233	29	280	22	327
EX-12	2400	72	43	75	36	93	29	112	22	131
EX-13	800	72	43	25	36	31	29	37	22	44
EX-14	475	72	43	15	36	18	29	22	22	26
ı				1 767		2 208		2 650		3 002

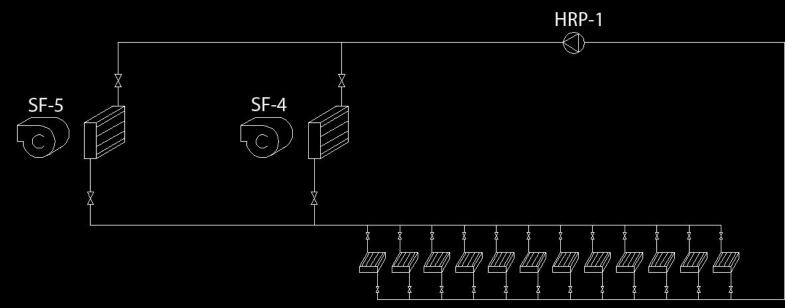
	MBH
40% Effective Coil	1,767
50% Effective Coil	2,208
60% Effective Coil	2,650
70% Effective Coil	3,092

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Mechanical Depth – Run Around Heat Recovery

Available Airstreams

- 12 Exhaust Airstreams
- Ducted to roof through the penthouse
- Targeted stair shafts


Recoverable Energy

- 49,150 CFM Total
- Unknown Temps Conservatively Assume 72°F
- Differing Coil Configurations compared to reduce ΔP

Loop Configuration

- 12 Exhaust Airstreams with Heat Recovery Coils
- Added Pre-heat Coils to Existing SF-4 & 5
- 3 HP Loop Pump Added

Mechanical Depth – Run Around Heat Recovery

				Hea	t Rec	overy Pu	mps						
Unit	Manufact.	Frame Size	Somico	Туре	GPM	Total Head	VED	Emer.	Min Casing Size		lotor Da		
Omit	Widnuidct.	Frame Size	service	туре	GPIW	(f.t. H ₂ 0)	VFD	Power	Disc x Inlet x Impel.	HP	RPM	Volts	Phase
HRP-1	Bell & Goss.	182T	HE-4	End Suction	100	60	Y	Y	1.5"×2"×8"	з	1750	480	з

12 COILS IN EXHAUST AIRSTREAMS

- Project Team
- **Project Overview**
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

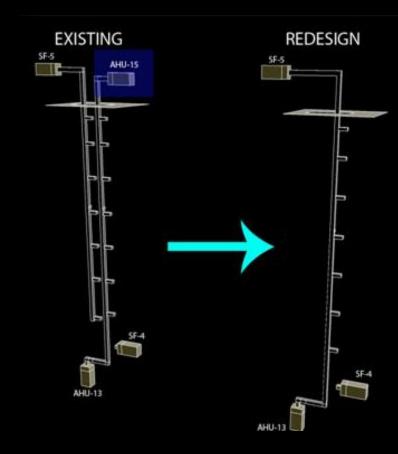
Mechanical Depth – Run Around Heat Recovery

Available Airstreams

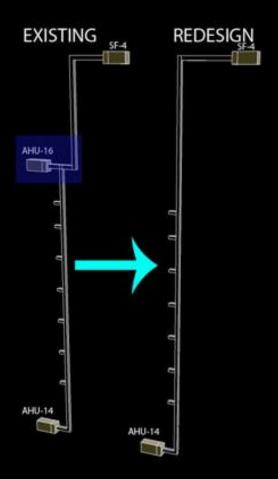
- 12 Exhaust Airstreams
- Ducted to roof through the penthouse
- Targeted stair shafts

Recoverable Energy

- 49,150 CFM Total
- Unknown Temps Conservatively Assume 72°F
- Differing Coil Configurations compared to reduce ΔP


Loop Configuration

- 12 Exhaust Airstreams with Heat Recovery Coils
- Added Pre-heat Coils to Existing SF-4 & 5
- 3 HP Loop Pump Added


Airside Redesign

- Removal of (2) 3,600 CFM AHU's
- Removal of Ductwork

Mechanical Depth – Run Around Heat Recovery

West Stair Shaft

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Mechanical Depth – Run Around Heat Recovery

Added Equipment Cost

• \$18,843

Removed Equipment Cost

- \$14,700
- **Annual Energy Saved**
 - 400 MBH
 - \$953/year
- **Estimated Payback**
 - 4.3 Years

Mechanical Depth – Run Around Heat Recovery

Heat	Recovery	System

Cost In	curred
HRP-1	\$2,593
Coils	\$6,000
Piping	\$10,250
	\$18,843
	\$18,843

Total Cost	\$4,
Annual Savings	\$
Payback (years)	4

Existing

Cost & Payback Calculations

Cost Av	erted
AHU-14	\$6,350
AHU-15	\$6,350
Ductwork	\$2,000

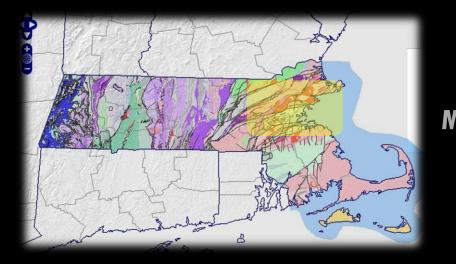
\$14,700

		Ŀ	
1	4	s	5

Peak Heating Load MBH

👅 Peak Htg. Load

Redesign


- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Site Geology

Mechanical Depth – Ground Source Heat Pump

- USGS State Geological Maps
- Ground Temperature 50°F

Mechanical Depth – Ground Source Heat Pump

Cambridge Area

Massachusetts

- Project Team
- **Project Overview**
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Mechanical Depth – Ground Source Heat Pump

Site Geology

- USGS State Geological Maps
- Ground Temperature 50°F

Required Bore Length Equation

- Three Heat Pulses Annual, Monthly, Daily
- $T_{wi} = 60^{\circ} F T_{wo} = 52^{\circ} F$
- 40,586 ft Required

Mechanical Depth – Ground Source Heat Pump

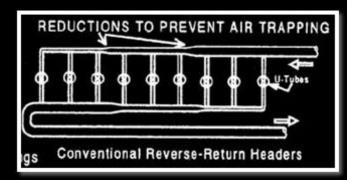
$$L_{c} = \frac{q_{a} \cdot R_{ga} + [q_{lc} - 3.142 \cdot W_{c}] \cdot [R_{p} + PLF_{m} \cdot R_{gm} + R_{gd} \cdot F_{sc}]}{t_{g} - \left[\frac{t_{wl} - t_{wo}}{2}\right] - t_{p}}$$

F_{sc}= short circuit heat loss factor Le= required bore length for cooling, ft q.= net annual average heat transfer to ground, Btu/h q_{ic}= building design cooling block load, Btu/h R_{es}= effective thermal resistance of ground (annual pulse), h-ft-°F/Btu R_{gd}= effective thermal resistance of ground (daily pulse), h-ft-°F/Btu Rgm= effective thermal resistance of ground (monthly pulse), h-ft-°F/Btu R_o= thermal resistance of pipe and borehole, h-ft-°F/Btu t_z= undistributed ground temperature, °F t_= temperature penalty for interference of adjacent bores, °F t_{wi}= liquid temperature at heat pump inlet, °F two= liquid temperature at heat pump at outlet, °F W_c= power input at design cooling load, Btu/h PLF_m= part load factor during design month

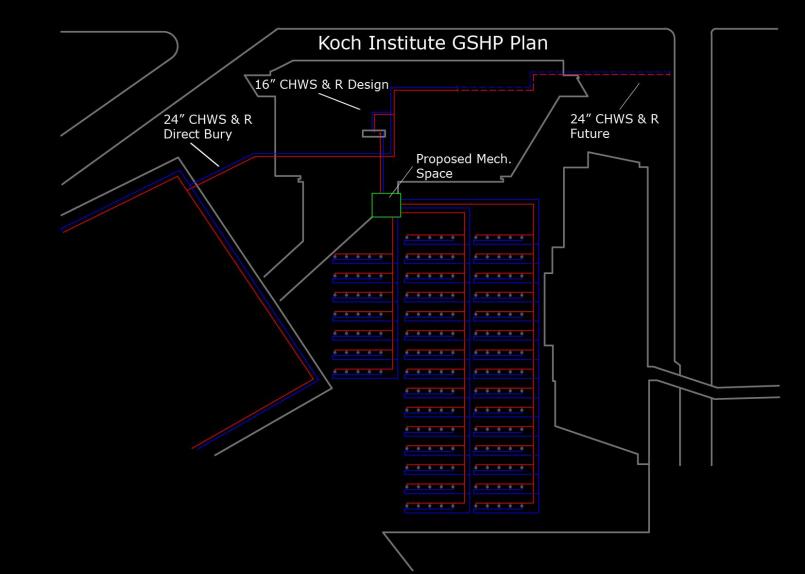
- Project Team
- **Project Overview**
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Mechanical Depth – Ground Source Heat Pump

Site Geology


- USGS State Geological Maps
- Ground Temperature 50°F

Required Bore Length Equation


- Three Heat Pulses Annual, Monthly, Daily
- $T_{wi} = 60^{\circ} F T_{wo} = 52^{\circ} F$
- 40,586 ft Required

System Layout

- 185 Bores @ 219 ft Depth
- (37) Sets of 5 Boreholes
- Reverse-Return Configuration

Mechanical Depth – Ground Source Heat Pump

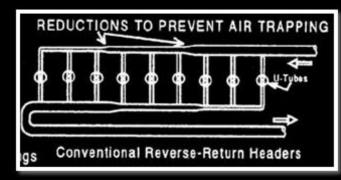
- Project Team
- **Project Overview**
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

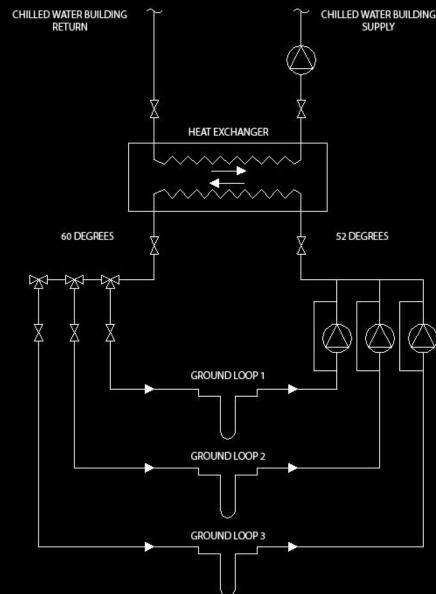
Mechanical Depth – Ground Source Heat Pump

Site Geology

- USGS State Geological Maps
- Ground Temperature 50°F

Required Bore Length Equation


- Three Heat Pulses Annual, Monthly, Daily
- $T_{wi} = 60^{\circ} F T_{wo} = 52^{\circ} F$
- 40,586 ft Required


System Layout

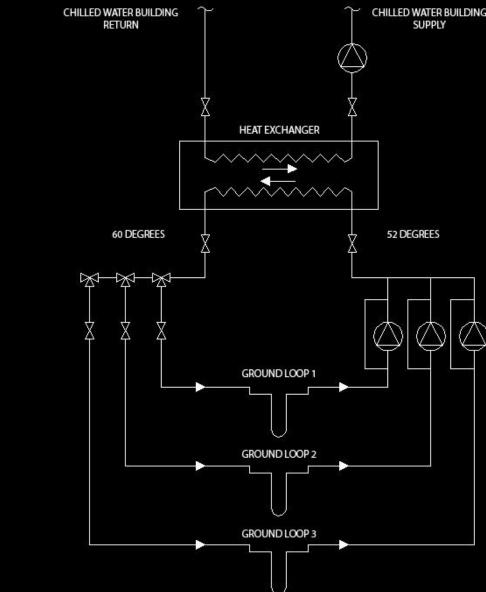
- 185 Bores @ 219 ft Depth
- (37) Sets of 5 Boreholes
- Reverse-Return Configuration

Loop Configuration

• 3 Individual Loops

Mechanical Depth — Ground Source Heat Pump

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions


Pumps

				Ground	Chill	led Wate	r Pui	mps					
Unit	Manufact.	Frame Size	Service	Turne	GPM	Total Head	VFD	Emer.	Min Casing Size	M	lotor D	ata at 6	i0 Hz
Unit	ivianulact.	Frame Size	Service	Туре	GPIWI	(f.t. H ₂ 0)	VFD	Power	Disc x Inlet x Impel.	HP	RPM	Volts	Phase
GCHWP-1	Bell & Goss.	213T	HE-4	End Suction	200	80	Y	Y	2"x2.5"x9.5"	7.5	1750	480	з
GCHWP-2	Bell & Goss.	213T	HE-4	End Suction	200	80	Y	Y	2"×2.5"×9.5"	7.5	1750	480	з
GCHWP-3	Bell & Goss.	182T	HE-4	End Suction	100	60	Y	Y	1.5"×2"×8"	з	1750	480	з
Assumption	ns												
20% Ethyle	ne Glycol base	d Water Solu	tion with	Specific Grav	ity @ 5	50 °F = 1.07 c	adjust	ing hors	epowers accordingly				
				Chi	lled \	Water Pu	mps						
Unit	Manufact.	Frame Size	Service	Туре	GPM	Total Head	VFD	Emer.	Min Casing Size	M	lotor D	ata at 6	i0 Hz
Unit	Manulact.	Frame Size	Service	туре	GPIW	(f.t. H ₂ 0)	VFD	Power	Disc x Inlet x Impel.	HP	RPM	Volts	Phase
CHWP-3	Bell & Goss.	245T	HE-4	End Suction	500	80	Y	Y	4"×5"×9.5"	15	1750	480	3

Mechanical Depth – Ground Source Heat Pump

• 3 Ground Loop Pumps

- (2) 200 gpm, 7.5 HP
- (1) 100 gpm, 3 HP
- 1 Chilled Water Pump
 - 500 gpm, 15 HP

Mechanical Depth — Ground Source Heat Pump

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Mechanical Depth – Ground Source Heat Pump

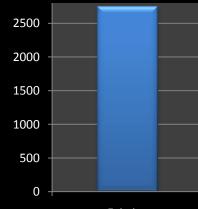
Added Equipment and Construction Cost

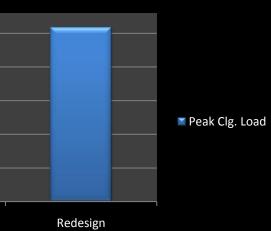
• \$191,765

Annual Energy Saved

- Shaves 160 tons off Peak Cooling Load
- \$86,651/year

Estimated Payback


• 2.2 Years


Mechanical Depth — Ground Source Heat Pump

Ground Source	Heat Pun	np Cost & P	Payback Calcula
Cost Incurr	ed		
illing	\$82,935		
ping	\$51,223		
routing	\$8,900		
iscellaneous	\$35,000		
umps	\$11,208		
eat Exchanger	\$2,500		
		4404 755	
otal Cost		\$191,765	
nnual Savings		\$86,651	
ayback (years)		2.21	

Ground Source	Heat Pun	np Cost & P	ayback Calculations
Cost Incuri	red		
Drilling	\$82,935		
Piping	\$51,223		
Grouting	\$8,900		
Miscellaneous	\$35,000		
Pumps	\$11,208		
Heat Exchanger	\$2,500		
Total Cost		\$191,765	
Annual Savings		\$86,651	
Payback (years)		2.21	

Peak Cooling Load (tons)

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Construction Management Breadth

Goals and Objectives

- Optimize the Construction of GSHP
- Determine Cost of GSHP

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Construction Management Breadth

Goals and Objectives

- Optimize the Construction of GSHP
- Determine Cost of GSHP

Estimation Assumptions

• Drilling Cost – *RS Means Mechanical Cost Data 2009*

	Daily Output (ft/day)	Rental (\$/wk)
L _{bore} >325	900	16960
225≤ L _{bore} ≤ 325	1200	14840
L _{bore} < 225	1800	12190

- Piping Cost
 - $$0.66/ft^2 1 \frac{1}{2}$ " HDPE Pipe
 - \$1.32/ft² 3" HDPE Pipe
- Grouting Cost
 - \$8,900 Based on Total Borehole Length
- Miscellaneous Cost
 - Increases w/ number of Boreholes

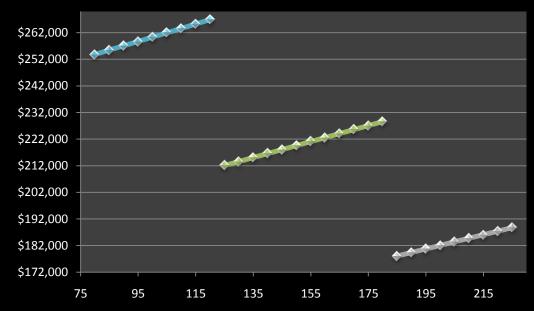
Construction Management Breadth

	L _{total}	Number	Bore	day/	days	weeks	Drilling	Piping	Grouting	Misc	Total
		of Bores	Depth	bore			Cost	Cost	Cost	Cost	Cost
	40586	80	507	0.564	50.056	10.01	\$169,788	\$50,639	\$8,900	\$24,500	\$253,827
	40586	85	477	0.531	50.366	10.07	\$170,840	\$50,720	\$8,900	\$25,000	\$255,460
	40586	90	451	0.501	50.676	10.14	\$171,891	\$50,802	\$8,900	\$25,500	\$257,093
Lbore >325	40586	95	427	0.475	50.986	10.20	\$172,943	\$50,883	\$8,900	\$26,000	\$258,726
Ň	40586	100	406	0.451	51.296	10.26	\$173,995	\$50,965	\$8,900	\$26,500	\$260,359
Ē	40586	105	387	0.429	51.606	10.32	\$175,046	\$51,046	\$8,900	\$27,000	\$261,992
	40586	110	369	0.410	51.916	10.38	\$176,098	\$51,128	\$8,900	\$27,500	\$263,625
	40586	115	353	0.392	52.226	10.45	\$177,149	\$51,209	\$8,900	\$28,000	\$265,258
	40586	120	338	0.376	52.536	10.51	\$178,201	\$51,291	\$8,900	\$28,500	\$266,891

	L _{total}	Number	Bore	day/	days	weeks	Drilling	Piping	Grouting	Misc	Total
		of Bores	Depth	bore			Cost	Cost	Cost	Cost	Cost
	40586	125	325	0.271	41.572	8.31	\$123,385	\$50,808	\$8,900	\$29,000	\$212,093
	40586	130	312	0.260	41.882	8.38	\$124,305	\$50,890	\$8,900	\$29,500	\$213,595
	40586	135	301	0.251	42.192	8.44	\$125,225	\$50,971	\$8,900	\$30,000	\$215,096
ы	40586	140	290	0.242	42.502	8.50	\$126,145	\$51,053	\$8,900	\$30,500	\$216,598
325	40586	145	280	0.233	42.812	8.56	\$127,065	\$51,134	\$8,900	\$31,000	\$218,099
Lbore≤	40586	150	271	0.225	43.122	8.62	\$127,985	\$51,216	\$8,900	\$31,500	\$219,601
Ē	40586	155	262	0.218	43.432	8.69	\$128,905	\$51,297	\$8,900	\$32,000	\$221,103
225≤	40586	160	254	0.211	43.742	8.75	\$129,825	\$51,379	\$8,900	\$32,500	\$222,604
8	40586	165	246	0.205	44.052	8.81	\$130,745	\$51,460	\$8,900	\$33,000	\$224,106
	40586	170	239	0.199	44.362	8.87	\$131,665	\$51,542	\$8,900	\$33,500	\$225,607
	40586	175	232	0.193	44.672	8.93	\$132,586	\$51,623	\$8,900	\$34,000	\$227,109
	40586	180	225	0.188	44.982	9.00	\$133,506	\$51,705	\$8,900	\$34,500	\$228,610
	L _{total}	Number	Bore	day/	days	weeks	Drilling	Piping	Grouting	Misc	Total

	L _{total}	Number	Bore	day/	days	weeks	Drilling	Piping	Grouting	Misc	Total
		of Bores	Depth	bore			Cost	Cost	Cost	Cost	Cost
	40586	185	219	0.122	34.018	6.80	\$82,935	\$51,223	\$8,900	\$35,000	\$178,058
	40586	190	214	0.119	34.328	6.87	\$83,691	\$51,304	\$8,900	\$35,500	\$179,395
	40586	195	208	0.116	34.638	6.93	\$84,447	\$51,386	\$8,900	\$36,000	\$180,733
_{re} <225	40586	200	203	0.113	34.948	6.99	\$85,203	\$51,467	\$8,900	\$36,500	\$182,070
V P	40586	205	198	0.110	35.258	7.05	\$85,958	\$51,549	\$8,900	\$37,000	\$183,407
Ē	40586	210	193	0.107	35.568	7.11	\$86,714	\$51,630	\$8,900	\$37,500	\$184,744
	40586	215	189	0.105	35.878	7.18	\$87,470	\$51,712	\$8,900	\$38,000	\$186,082
	40586	220	184	0.102	36.188	7.24	\$88,226	\$51,793	\$8,900	\$38,500	\$187,419
	40586	225	180	0.100	36.498	7.30	\$88,982	\$51,875	\$8,900	\$39,000	\$188,756

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions


Results

Construction Management Breadth

- Optimum at 185 Boreholes @ Depths 219 ft
- Construction Duration 7 weeks
- Total Construction Cost \$178,000
- Added Equipment Cost \$13,700
- System Cost \$191,700

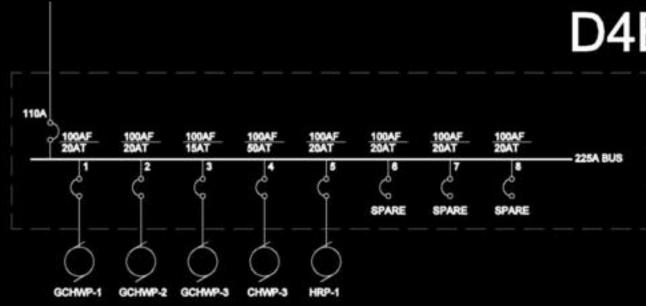
Construction Management Breadth

	Number of Bores		day/b ore	days	weeks	Drilling Cost	Piping Cost	Grouting Cost	Misc Cost	Total Cost
40586	185	219	0.122	34.018	6.80	\$82 <i>,</i> 935	\$51,223	\$8,900	\$35,000	\$178,058
40586	190	214	0.119	34.328	6.87	\$83,691	\$51,304	\$8 <i>,</i> 900	\$35,500	\$179,395
40586	195	208	0.116	34.638	6.93	\$84,447	\$51,386	\$8 <i>,</i> 900	\$36,000	\$180,733

- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

New Distribution Panel — D4B-1

Electrical Breadth Overview


- Serves 4 New Pumps
- 110A Breaker
- 225A Main Bus

Electrical Breadth Overview

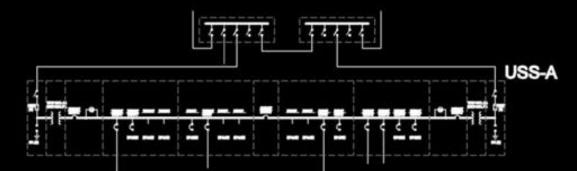
VOLTAGE: 2	77/ 480		3 PHA	SE		4 WIRE		TOTAL WATT	S L1	2	3,432	DESIG	NATION	D4B1
MAIN BREAKER:	110A	110A FRAME 110			0A	TRIP:	110A	TOTAL WATTS L2			3,432			1 OF 1 TUBS
MAIN BUS:	225A		MOUN	MOUNTING:			TOTAL WATTS L3		23,432		LOCAT	ION:	BASEMENT	
NOTE:								TOTAL WATT	S	7	0,296			
							L1 L2							
	WA	TTSLC	DAD				YY	Y			WA	TTSLC	DAD	
					s		a r	E	S	4				
DIRECTORY	L1	L2	L3	CKT	AMPS			a	AMPS	CKT.	L1	L2	L3	DIRECTORY
GCHWP-1	2,740			1	20			\sim	50	2	15,694			CHWP-3
		2,740		3	20		•		50	4		15,694		
			2,740	5	20	\sim		-	50				15,694	
GCHWP-2	2,740			7	20	\sim	•	\sim	20			1		
		2,740		9	20	\sim	+	-		10				
			2,740		20	\sim		+		12				
GCHWP-3	1,129			13		\sim	++	-		14				
5		1,129	4 400		20			+		16 18				
HRP-1	1,129		1,129	17 19	20 15		+	+	20 20					
	1,125	1,129		21	15		++	-		22				
		1.123	1,129				Ť			24		- 8		
			1,120	25	20			+		26		t i		
2) 				27	20	\sim				28				
				29	20				20					
87				31	20		•		20	32		L ()	li – I	
				33	20		•		20	34				
				35	20			-		36				
				37	20	\sim		-		38				
					20	\sim	•	-		40				
				41	20	5			20	42				
SUBTOTAL	1,738	7,738	7,738								15,694	15,694	15,694	SUBTOTAL
RECEPTACLE LOAD		0	w											
EQUIPMENT LOAD	S:	70,296	w											
LIGHTING LOAD	S:	0	w											
DEMAND LOAD		70,296	w					TOTAL AM	MPS	x 12	5%=	105.8	AMPS	

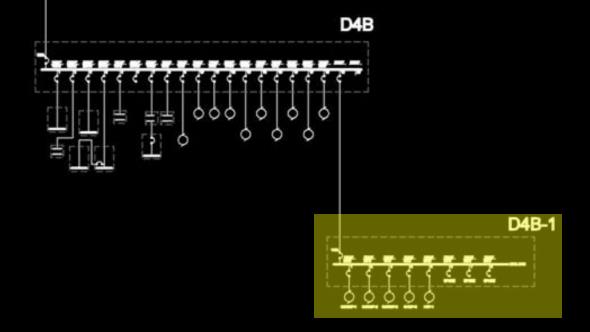
•	Project	Team

- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Electrical Breadth Overview

New Distribution Panel – D4B-1


- Serves 4 New Pumps
- 110A Breaker
- 225A Main Bus


Integration into System

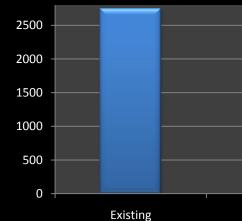
Tied into D4B

Electrical Breadth Overview

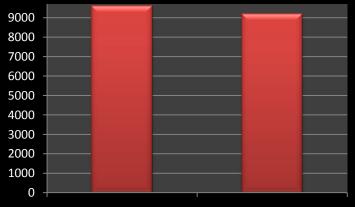
- Project Team
- Project Overview
- Existing Mechanical Systems
- Existing Design Loads
- Redesign Goals & Objectives
- Mechanical Depth Study
 - Heat Recovery
 - Ground Source Heat Pump
- Construction Management Breadth
- Electrical Breadth Overview
- Summary and Conclusions

Summary

Conclusions


Summary and Conclusions

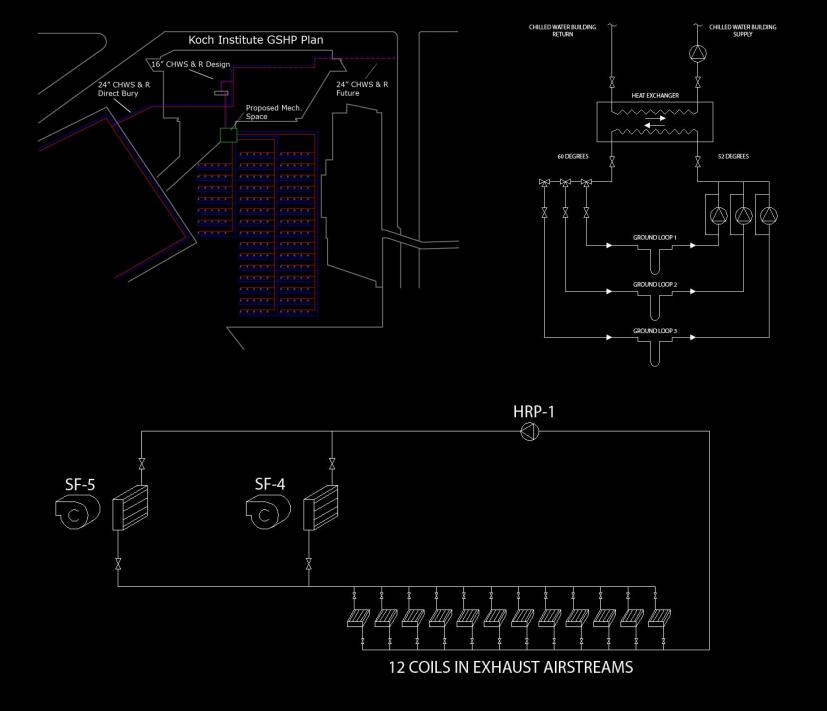
- Both Reasonable Paybacks
- Renewable Energy Added to Project
- Reductions on Cogeneration Plant
 - 400 MBH **\$965/year**
 - \$87,000/year • 160 Ton


- Ground Source Heat Pump = WORTHWHILE
- Heat Recovery = NEED MORE APPLICATION
 - Up to 3000 MBH Recoverable
 - Only 400 MBH Needed for Stairs

Peak Cooling Load (tons)

Peak Heating Load MBH

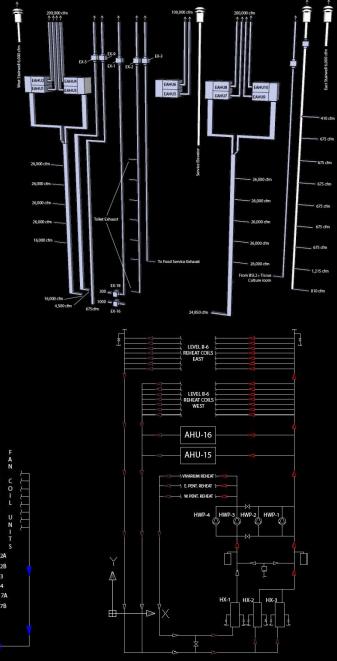
Existing



👅 Peak Clg. Load

Redesign

👅 Peak Htg. Load


Redesign

QUESTIONS

